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Prior analysis has shown that the sound power rediated

from reverberant vibration of a simply supported panel 1is
proportional to the length of the panel's perimeter when
the frequency is below the critical frequency. A simple
physical interpretation was made in terms of the mode shape
of resonant modes. Other analyses for power radiation from
a single straight boundary on an infinite panel indicated
that twice as much power radiates from a clamped edge as
from the simply supported edge, the spatial mean square
velocity being held constant.
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It is shown here that the increased radiation from
clamped edges is also predictable from simple considerations
of the mode shape. Moreover, among all boundaries having a

purely reactive rotatory impedance and restricting trens-
verse displacement to zero, the clamped edge is found to be
the most efficient radiator. For some impedances, power
radiation is found to approach zero. HUTHor
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Y BOYT BERANEK AND NEWMAN .«

SIMPLY SUPPORTED PANEL

In his study of the coupling between sound waves in a
fluid and dending vibrations of a simply supported rectangular
panel surrounded by an infinite rigid bvaffle, Maidanik con-
cluded that the strength of coupling is proportional to the
length of the panel's perimeter when the frequency is less
than the critical frequency.! (The critical frequency is
that at which the wavelength of free straight-crested bending
waves in an infinite panel of the same thickness would equal
the wavelength of free plane waves in the unobstructed fluid.)

His meassure of coupling is the radiation resistance; defined
in every case as the time average of radiated sound power for
& unit value of the space and time average of the square of
vibrational velocity. However, one may show by reciprocity
arguments that the same conclusion holds when a diffuse field
of sound waves forces the panel.Z
ality in Maildanik's relation involve no parameters of the panel
except the ratio of frequency to critical frequenoy. The rela-
tion is restricted to situations in which resonant vibration

predominates,

The factors of proportion-

Maidanik has also given & simply physical interpretation
of the relation of coupling to the perimeter, which is based
on considerations of the characteristic functlions, or mode
shapes of the naturel modes. A review of this phase of his
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BOLT BERANEK AND NEWMAN 1w

work will form the basis for the present extension. For a
rectangular panel with simply supported edges of lengths zx

and zy in the x and y directions, the characteristic functions

are
vy = (V2 #1n lgex) (V2 s1n k)
k"xlx/'r-mx » an integer ,

ket = m, , an integer ,

2 2 2

e + bty =l -

(1)

At resomance, kn is equal to kp, the wavenumber for free straight-
crested waves on the infinite panel. Within the confines of the
panel, o<x<£x and o<y<zy. the modal displacement is identical to
the superposition of four straight-crested waves. These consist
of the wave with a vector wavenmumber Koy having components k‘llx

and k’b’ and of its reflections in the x and y axes. Equation 1
has been normalized so that the spatial mean square value of v,,
is unity.

We consider a frequency well below the critical frequency,
8o that K2>>K where k 1s the wavemmber of free plane waves in
the fluid. The various modes resonant at about the same fre-
quency, i.e. with about the same ky, have different directions,
ranging from nearly normal to the x edges when k"x is small to
nearly normal to the y edges. Maidanik showed that only those
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modes which have directions nearly normal to one of the edges
are well coupled. Specifically, good coupling requires that
either k“x or kly be less than k.

Consider a mode nearly normal to the x edges, for which
case

e < K
2 _,2

ey = K5 - ke ~ 55> K° .

2 &

(2)

which is very short compared with the sound wavelength. A
section of the vibrating panel, taken pareallel to the y edges,
is shown in Fig. 1. 8Since the wavelength of the disturbance
18 small compared with the sound wavelength, the radiation
from one crest-to-node segment, such as A, is effectively can-
celled by the radiation from the adjacent segment, B, which is
out of phase with it. By extending this argument, one is led
to conclude that all the radiation from the lightly shaded
central portion is effectively cancelled, so that the redia-
tion from the section as a whole must be accounted for by the
radiation from the heavily shaded end segments, lying between
the panel's edges and the nearest crests.

The approximation employed here is similar to the well-
Imown use of "volume velocity" in calculating the radiation

e
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from a vibrating source all of whose dimensions are small in
comparison to the wavelength of sound. The volume velocity
is proportional to the net area under the whole deflection
curve. In contrast thereto, the present approximation is
applicable to a source whose size may be large in comparison
to the wavelength, so long as the vibrational wavelength is
small. When the size of the source is small, the two approxi-

mations are identical.

In the x direction, the shape of a mode nearly normal to
the x edges has a wavelength longer than the sound wavelength.
Therefore cancellation does not take place along this direction.
The conclusion is that sound rediation from the modal vibration
of the whole panel is identical with the radiation from a pair
of narrow bars of length zx, located on the x edges of the panel
and vibreting with mode shapes

d=Vasinigx , ky<k . (3)

The spatial mean square velocity of each bar equals the spatial
mean square velocity of the panel as a whole. The effective
width of each bar is the heavily shaded area in Fig. 1, i.e.,
the area from panel edge to nearest crest under the curve

V2 sin gy .
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The effective width equals
we = V2l = V'Emp . (4)

Each equivalent bar satisfies the conditions of a bar
vibrating above its critical frequency, for which the redia-
tion resistance is known to equal

Rra.d'%pock"itx (5)
where P, is the density and ¢ the sound speed of the tluidﬁ
This result is independent of mode number and proportional to
£, for every mode nearly normal to the x edges (1.e. with
k"x<k). A similar result, proportional to zy, can be obtained
for every mode nearly normal to the y edges. When it has been

confirmed that equal numbers of modes of the two types are
resonant in a given small interval of frequency, the observed
proportionality is found between the perimeter P-a(zxq-zy) and
the total rediation resistance for reverberant panel vibration,
in which modes of all types have equal energy. The analytical
result is

Rogq = Po° P 2E/MS . (6)

Maidanik has presented this physical interpretation and con-
firmmed that the radiation resistance predicted therefrom is




BOLT BERANEK AND NEWMAN iwc

identical with the leading term of an expansion of analytical
results in powers of the small quantity k/lrp (ref. 1, Eq. 2.30a).

Indeed, more detalled consideration shows that all the
leading characteristics of the radiated sound follow from
such an interpretation~-even the directivity functions for
individual modes. The sound pressure radiated to a great
distance in a direction specified by the unit vector {2 is
proportional to a surface integral over the panel:

]
p(@) = Je T 4 (r) a0 (7)

where r is a position vector in the plane of the panel. (Here
the exponential is the only variable part of the Green's func-
- tion for the point r on the panel and a distant observation

point.) In combination with the mode shape specified in Eq. 1,
this equation leads to a product of two line integrals of the

form

1= Vafe W e kv ay (8)

where &y is the unit vector along the y edge of the panel.
When ky- = k2 >> K, the cancellation central to the physical
interpretation is reflected mathematically by the limiting
value of the integral:
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=ikl Qe
I« v (lte ’&%)u%-.o ’ (9)

where w, 18 the effective width given in Eq. 4; the plus sign
is to be chosen when the end segments of vy have the same sign
(1.e., wvhen the mode integer m, 18 odd) and vice versa.

The second line integreal in Eqg. 7, Ix' gives the pressure
radiated by a strip, of unit width, parallel to the x edge and
vibrating with the mode shape specified in Eq. 3. The formula
is identical with that for the pressure madlated from a bar of
unit width vibreting at a frequency above its critical fre-
quency. 3Since k,k<k, there are angles Q at which every part
of the bar contributes equally to the radiation; at other
angles effectively complete destructive interference occurs.
This strip, or bar, behaves as a directive line armay, and
the sound power flux 1s distributed along its whole length.
This conclusion will de important in our latter assessment

of the effects of boundary conditions.
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OTHER EDGE CONDITIONS

This interpretation of the sound rediation from a panel
as being due to the vibrating strips along its edges, when
the frequency is less than critical, has been restricted to
panels with simply supported edges. lh:ldan.tkl and Lyona
extended the analysis to other boundary conditions by analy-
tical flanking attacks.

On Lyon's suggestion, both he and Maidanik investigated
the ratio of radiation resistance to perimeter by considering
a truly diffuse, reverberant field of streight-crested waves
incident upon an infinite straight boundary in an infinite
plane panel. In essence, this procedure replaces the quasi-
diffuse reverberant field of the finite large panel, which
has discrete angles of incidence distributed uniformly in
angle, by an infinitely dense uniform distribution of angles
of incidence. Since the discrete angles of incidence of the
finite panel fluctuate with frequency variations, the procedure
should yield a good average estimate.

One possidble reservation of confidence 1s readily answered
in a qualitative way. Granted that, according to Maidanik's
physical interpretation, the sound radiation may be accounted
for by the strip nearest the boundary, it is still conceivable
that this rediation could be significantly affected by the

.
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boundary conditions at the end of the strip, i.e. at the
cormers of the panel. However such effects are not to be
expected because, as observed above, the power flux is
distributed uniformly along the strip. Small differences
in the mode shape near the corners, such as between clamped
and simply supported edges, can have little effect on the
total flux. On the other hand, differences in boundary
conditions along the edge of the strip may lead to signifi-
cant effects through modification of the effective width
E€q. 4).

1 4

Both Maidanik™ and Lyon’ confirmed that his analysis for
an infinitely long, straight edge yielded the same result as
the modal analysis (Eq. 6) in the case of a simply supported
edge that transmits no energy. Each also concluded that
exactly twice as much sound power is radiated from a clamped
boundary, insofar as leading terms in (k/kp) are concerned.
In all cases, the important contributions to sound power are
those from waves incident upon the boundary at an angle near
the normal.

We wish to demonstrate that the increased radiation for

a clamped edge is also derivable from simple considerations
of the mode shape, similar to Maidanik's physical interpreta-

tion for a simply supported edge. We shall investigate as

=10~
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well the whole claass of boundaries for which (1) there 1s no
transverse displacement at the edge, (2) no vibration is
trensmitted across the edge, and (3) the ratio of slope to
curvature of the vibreting panel, evaluated normal to the
edge, 18 an arbitrary constant paremeter. In conjunction,

the last two boundary conditions are equivalent to specifying
a rotatory impedance whose real part vanishes and whose imagi-
nary part is an arbitrery constant. (The ratio of slope to
curvature must be real if no energy is transmitted.)

Maidanik and Lyon found that angles of incidence near
normal were most important. Here we consider a bending wave
in an infinite panel which is incident precisely normally
upon a straight boundary &t x=0. The boundary conditions to
be considered are given above; vibration is restricted to
positive values of x. The general solution for finite trens-
verse deflection 1s

¥(x) = V—E eoa(kpx + ¢) - VE cosd e.k‘:':t . (10)

The mean square value of v for x>0 has been adjusted to unity.
The slope, curvature, and rotatory reactance X at the boundary
are determined by the parameter ¢:

¥(0) = - 2 K, sin(9- 3r)

¥v"(0) = - 2V§ 1% cosd (11)
X = - Dy"(0)/w#(0) = (2mAQ)/(1-tans) ,

.y s 5
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where D is the panel's bending rigidity, o is frequency, m is
the panel's mass per unit area, and kg - mam/D. The implicit
time dependence 1s exp(iot), and positive values of X imply a
massive boundary. Without loss of generality, ¢ will be re-
stricted to the range O to ¥. Note the particular cases of
the simply supported edge, ¢ = 3v, and the clamped edge, ¢= f¥.
Curves of deflection ¥(x) near the edge are given in Fig. 2
for several values of ¢,

For values of kpx greater than about 2r, the exponential
term in Eq. 10 is quite negligible and ¥ is practically sinu-
soidal. In that region, Maidanik's physical argument of de-
tailed cancellation of sound radiation (for k%) is equally
valid for all values of ¢. In generalization of Maidanik's
interpretation, we might define as the equivalent width We of
the strip at the boundary, the net area under the v(x) curve
from the boundary to thg crest at kpx = 2r-¢, beyond which
cancellation takes place. However, for analytical convenience,
we use the infinite integral:’

(ror-0) /&,
weeln| [ #xjax| = (2/c)) [stn(or 3.

o
(12)

-12-
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The sound power radiated from the boundary is proportional
to “2 (Eq. 5). Curves proportional to '5 and to the rotatory
reactance X of the boundary are given in Fig. 3. This gener-
alized physical interpretation correctly accounts for the
sound radiation from a simply supported edge (Eq. 4), and also
correctly predicts that twice as much power should be radiated
from the clamped edge.

Two other conclusions should be noted. First, the clamped
edge leads to the largest radiation resistance of any edge with
purely reactive rotatory impedance and with zero transverse dis-

placement. Secondly, there is a massive rotatory reactance,

X = anficd

for which the equivalent width vanishes. This is the case for
b= Er; the corresponding deflection curve is plotted in Fig. 2C.
One should not conclude that the radiation resi:ztance really
vanishes exactly in this case, but rather that it is dependent
on residual, less efficient, coupling. Moreover, the complica-
tions resulting from non-vanishing of the transverse displace-
ment at x=0 and from finite energy transmission, which are
usual for real boundaries and are encompassed by Lyon's general

analyais,n are not accounted for here.

One should note that the present analysis of the effect of
boundary conditions on radiation resistance is also directly

-13-
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applicable to a beam vibrating at frequencies below its critical
frequency. (The beam with simply supported ends was analyzed in
reference 3.) For such a beam, the net coupling to sound is
attributable to the two end regions as shown in Fig. 1; it 1s
numerically equal to the coupling to a pair of rigid pistons
located at the ends, each having an area equal to the product of
the beam's width by the equivalent width (Eq. 12), and each having
a mean square velocity equal to the mean square velocity of the
whole beam.

14~
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MODES OF SMALL ORDER NUMEER

The present analysis for vibrations of a semi-infinite
beam or panel is not appropriate to the first few modes of a
finite structure. Nonetheless, it can be shown that many of
the conclusions are still valid, even for the fundamental
mode.

Consider the lower modes of a finite beam. The results
for it should also be applicable to a long narrow panel, but

not to a squarish panel which is "all eorners”". The expo-
nential term in the solution for the infinite structure dles
out so fast with distance from the boundary that the differ-
ence between the deflection curves of the semi-infinite beam
and the finite beam having the same value of kp is quite
small, even for the second mode (see Fig. 2). Therefore the
results of the present analysis, and the expression for
"equivalent width" (Eq. 12), are applicable to all modes
except possibly the fundamental.

Let us examine the fundamental modes of the finite beam
in the two cases of clamped and simply supported ends. Note
in the case of the fundamental modes that the central region
of cancellation is non-existent, so that the net coupling to
sound is determined by the total area under the deflection

curve; in the present notation this area is equated to 2we.

-15-
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.

The expressions for w, given in Eqs. 4 and 12 for simply
supported ends are precisely correct. For the fundamental
mode with clamped ends it can be shown that

We L 1-965/kp ’

which 18 only 1.8 percent smaller than the expression in

Eq. 12, derived for the semi-infinite stmcture.s Therefore
Eq. 12 1s an excellent approximation for all modes, for
clamped and supported ends.

The bald conclusion that "ecoupling of sound to structure
with clamped edges is twice that for simply supported edges,
even in the fundamental mode" can be applied if certain pre-
cautions are observed. First, the spatial mean square deflec-
tions must be equal in the two cases. Second, the conclusion
refers only to the analytic expression of coupling as a func-
tion of k and l&). Two identical structures vibrating in the
same mode with different boundary conditions will resonate at
different frequencies and at different values of k and kp.
These differences are greater for modes of lower order number.
Third, the fundamental mode of & nearly square panel remains
to be investigated.

(This work was sponsored by the National Aeronautioc: and
Space Administration.)
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It is probadble that this infinite integral is the precise
expression for equivalent width in the limit as frequency
@ and k approach zero. Compare the familiar use of net
volume velocity in calculating the low frequency radiation
from & piston. Then this discussion identifies the net
area as principally localized in the strip out to the
second crest, from which conclusion is derivable a cri-
terion for using the low frequency approximation: that
(2t-¢)k/kp be small,

The integral of deflection 1is related to the values at the
ends of the third derivative, because ¥ satisfies the
fourth-order bending wave equation. The values of the
third derivative were taken from R.E.D. Bishop and

D. C. Johnson, Vibration Analysis Tgbles (The University
Press, Cambridge, England, 1956). |
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Fig. 1

CAPTIONS

Sinmusoidal deflection curve for simply supported
panel. At low frequencies, coupling to sound due
to the lightly shaded, centreal part cancels, so
that the net coupling is due to the heavily shaded
edge segments.

Deflection curves for bending waves satisfying

rotatory reactance bdoundary conditions at x=0,

The value of the resctance is determined by the
paremeter ¢.

Variation with reactance parameter ¢ of the sound
power radiation, proportional to wi, for various

boundary reactances, proportional to (1 - tandb)'l.
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